Remote sensing identification of marine floating raft aquaculture area based on sentinel-2A and DEM data

Author:

Cui Yishuo,Zhang Xuehong,Jiang Nan,Dong Tianci,Xie Tao

Abstract

Marine floating raft aquaculture forms an integral component of the monitoring of coastal marine environments. It is essential to accurately obtain the spatial distribution of marine floating raft aquaculture to gain the fullest understanding of the development of marine fishery production, optimization of the spatial layout of aquaculture, and protection of the marine environment. The Sentinel-2 Multispectral Instrument (MSI) is used to acquire optical imagery at a high spatial and temporal resolution, sampling 13 spectral bands in the visible, near-infrared, and short-wave infrared parts of the spectrum. This research reports how a decision-tree-based procedure was developed to map marine floating raft aquaculture using Sentinel-2A MSI imagery and DEM (Digital Elevation Model) data. Three indices and spectral features were used in this algorithm to differentiate marine floating rafts from other land-cover and land-use types in Fangchenggang City, China. These included the Differential Ratio Floating Raft Index (DRRI), newly proposed in the paper, the Normalized Difference Vegetation Index (NDVI), and visible reflectance. Additionally, a comparison was made between the decision tree classification method (DT) and the random forest (RF) and support vector machine (SVM) methods. The results demonstrate that these three methods can obtain raft information with high accuracy. Finally, the classification results were merged into aquaculture rafts and non-aquaculture rafts. The overall accuracy for DT was 98.20% and 1.28 and 4.99 percentage points higher than RF and SVM, respectively. The user accuracy for marine floating rafts for DT (98.25%) was also markedly higher than that of RF and SVM methods (93.97% and 86.50%, respectively). The producer accuracy for marine floating rafts through the DT method was 98.17%, 0.81 percent lower than that of RF, and 1.03 percent lower than that of SVM. The decision-tree method does not assume strict data distribution parameters, optimization of the application of multispectral imagery and elevation data becomes possible, and combing with the DRRI index, then results in higher classification accuracies of marine floating rafts. When using multi-source data of different types and distributions to map marine floating rafts, a decision-tree method, therefore, appears to be superior to RF and SVM classifiers.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3