Importance of life history traits for vulnerability to climate change: implications for macroalgal restoration

Author:

de Caralt Sònia,Verdura Jana,Santamaría Jorge,Vergés Alba,Cebrian Emma

Abstract

Fucalean algae are dominant canopy-forming species that create extensive and highly productive ecosystems in the intertidal and subtidal rocky shores of temperate seas. Regrettably, these marine forests are in decline due to various human drivers, with the Mediterranean Sea one of the most threatened areas. To design appropriate restoration strategies adapted to cope with the unavoidable change in future climate conditions, the response to climate change of the candidate species must be considered. It is important to assess how the specific life history traits of the foundational species may determine environmental requirements, and thus responses to future climate change. This knowledge will allow us to predict the potential winners and losers among the species potentially inhabiting the same areas in a future context of global climate change, providing important information to fine-tune future restoration interventions. The aim of this study was to evaluate the response of two canopy-forming species inhabiting similar upper subtidal zones but with different life history traits to a combination of anomalous high temperatures and increased UV radiation. One of the species (Ericaria crinita) was perennial, slightly exposed rocky shores and dwelling in areas where extreme temperatures can be frequent; while the other (Ericaria mediterranea) a semi-perennial species that dwells in wave-exposed zones, with seawater temperatures buffered by the high hydrodynamism. Our results show that the effects of temperature and radiation are species- (mediated by the species life history traits) and life-stage specific. High temperatures strongly affected the adults of both species, especially E. mediterranea. The germlings in addition to being very susceptible to high temperatures, were also vulnerable to UV radiation, exacerbating the impacts of temperature, especially on E. crinita recruits. Interestingly, vulnerability to climate-driven impacts was determined by the specific life history traits, with i) the species dwelling in open areas the most sensitive to warming and, ii) the perennial species the most vulnerable to UV radiation. Last, we discuss how these species-specific responses to climate-driven impacts may be key in terms of species that could foster the resistance and resilience of marine ecosystems to future climate impacts.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3