High Diazotrophic Diversity but Low N2 Fixation Activity in the Northern Benguela Upwelling System Confirming the Enigma of Nitrogen Fixation in Oxygen Minimum Zone Waters

Author:

Reeder Christian Furbo,Arévalo-Martínez Damian L.,Carreres-Calabuig Joan A.,Sanders Tina,Posth Nicole R.,Löscher Carolin Regina

Abstract

Oxygen minimum zones (OMZs) have been suggested as a suitable niche for the oxygen-sensitive process of biological fixation of dinitrogen (N2) gas. However, most N2 fixation rates reported from such waters are low. This low N2 fixation activity has been proposed to result from the unusual community of N2 fixers, in which cyanobacteria were typically underrepresented. The Northern Benguela Upwelling System (North BUS) is part of one of the most productive marine ecosystems and hosts a well-developed OMZ. Although previous observations indicated low to absent N2 fixation rates, the community composition of diazotrophs needed to understand the North BUS has not been described. Here, we present a first detailed analysis of the diazotrophic diversity in the North BUS OMZ and the Angola tropical zone (ATZ), based on genetic data and isotope speciation. Consistent with a previous study, we detected a slight N deficit in the OMZ, but isotope data did not indicate any active or past N2 fixation. The diazotroph community in the North BUS was dominated by non-cyanobacterial microbes clustering with members of gamma-proteobacteria, as is typical for other OMZ regions. However, we found a strikingly high diversity of Cluster III diazotrophs not yet described in other OMZs. In contrast to previous observations, we could also identify cyanobacteria of the clades Trichodesmium sp., UCYN-A and Cyanothece sp., in surface waters connected to or above the OMZ, which were potentially active as shown by the presence of genes and transcripts of the key functional marker gene for N2 fixation, nifH. While the detection of diazotrophs and the absence of active N2 fixation (based on isotopic speciation) are consistent with other OMZ observations, the detected regional variation in the diversity and presence of cyanobacteria indicate that we still are far from understanding the role of diazotrophs in OMZs, which, however, is relevant for understanding the N cycle in OMZ waters, as well for predicting the future development of OMZ biogeochemistry in a changing ocean.

Funder

Villum Fonden

Bundesministerium für Bildung und Forschung

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3