AirSeaFluxCode: Open-source software for calculating turbulent air-sea fluxes from meteorological parameters

Author:

Biri Stavroula,Cornes Richard C.,Berry David I.,Kent Elizabeth C.,Yelland Margaret J.

Abstract

The turbulent exchanges, or fluxes, of heat, moisture and momentum between the atmosphere and the ocean play a crucial role in the Earth’s climate system. Direct measurements of turbulent fluxes are very challenging and sparse, and do not span the full range of environmental conditions that exist over the ocean. This means that empirical “bulk formulae” parameterizations that relate direct flux observations to concurrent measurements of the mean meteorological and sea surface variables contain considerable uncertainty. In this paper, we present a Python 3.6 (or higher) open-source software package “AirSeaFluxCode” for the computation of the heat (latent and sensible) and momentum fluxes. Ten different parameterizations are included, each based on published descriptions or code and each derived from a different set of observations, or different assumptions about the turbulent exchange processes. They represent a range of current expert opinion on how the fluxes depend on mean properties and can be used to explore uncertainty in calculated fluxes. AirSeaFluxCode also allows the adjustment of the mean meteorological input parameters (air temperature, humidity and wind speed) from the height at which they are obtained to a user-defined output height. This height adjustment enables the comparison of measurements, or model-derived values, made at different heights above sea-level. The parameterizations calculate the fluxes using input parameters that are relatively easily to measure, or are available as model output: wind speed, air temperature, sea surface temperature, atmospheric pressure and humidity. Where original code is available we have compared its output with that of AirSeaFluxCode. Any changes made to increase consistency across algorithms by standardizing computational methods or calculation of meteorological variables, for example, are discussed and the impacts quantified: these are shown to be insignificant except for a few cases where conditions were extreme, and AirSeaFluxCode is shown to be robust. We also investigate the impact on the fluxes caused by different assumptions about the exchange processes, or the choices inherent in the implementation of the parameterizations. For example, sea surface temperature usually refers to data typically obtained at depths of between 1 and 10 m. However, since some parameterizations require a “skin” sea surface temperature, code that adjusts temperature at depth to skin temperature is included: this has a very significant impact on the fluxes. Selecting a parameterization that is appropriate for the available sea surface temperature will avoid the need to adjust the sea temperature data and the uncertainties associated with that adjustment, and will also avoid the biases due to use of the “wrong” measure of temperature. Significant differences also resulted from assumptions about the size of reduction in sea surface humidity to account for salinity effects: the uncertainty in the reduction factor needs to be quantified in future analyses. Fluxes in extreme conditions are particularly uncertain since the transfer coefficients in the different parameterizations vary most at very high and very low wind speeds. Low wind speeds are also challenging for numerical implementation since choices have to be made regarding: convergence criteria for the iterative calculation, inclusion of a parameterization for convective gustiness, or application of ad hoc limits to various parameters. All of these choices can significantly affect the flux estimates for light winds.

Funder

National Oceanography Centre

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference56 articles.

1. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies;Alappattu;J. Geophysical Research: Oceans,2017

2. The impact of some aspects of the boundary layer scheme in the ECMWF model;Beljaars,1995

3. The parameterization of surface fluxes in large scale models under free convection;Beljaars;Quart. J. R. Meteor. Soc,1995

4. Flux parameterization over land surfaces for atmospheric models;Beljaars;J. Appl. Meteorology,1991

5. Review and assessment of latent and sensible heat flux accuracy over the global oceans;Bentamy;Remote Sens. Environ.,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3