Lagrangian Observation of 234Th and Its Application in Constraining the Sinking of Particulate Organic Carbon on the Slope of the Northeastern South China Sea

Author:

Yang Weifeng,Zhao Xiufeng,Chen Min,Qiu Yusheng,Zheng Minfang

Abstract

The 234Th–238U disequilibrium has been widely used to quantify the sinking flux of particulate organic carbon (POC) out of the upper ocean. However, the influence of the advection on the quantification is poorly understood due to the lack of in situ measured physical parameters. Here, a Lagrangian observation was deployed for 39 h to track the variability of 234Th along with the current on the slope of the northeastern South China Sea (SCS). Contrasting to the general ocean interior, 234Th showed deficits relative to 238U in the mesopelagic waters, indicating an enhanced removal of 234Th. Concurrently, elevated total particulate matter (TPM) and POC contents were observed in the mesopelagic waters, supporting the driving force of the cross-shelf dispersion of re-suspended shelf/slope sediments for the 234Th removal. The widely used 234Th-model (ignoring physical processes) produced a much lower sinking flux of POC than the sediment trap-derived POC flux during the same observation, indicating an unneglectable influence of advection and diffusion. By considering the main horizontal advection and vertical diffusion, the 234Th–238U method gave rise to comparable results to sediment trap. 234Th-derived POC fluxes showed an increased pattern from 300 to 1,000 m, consistent with the more abundant POC where. These results indicated that advection represents an unneglectable process during the quantification of the sinking flux of 234Th over the slope of the SCS.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3