Cracking and Photo-Oxidation of Polyoxymethylene Degraded in Terrestrial and Simulated Marine Environments

Author:

Tang Chih-Cheng,Chen Ying-Ting,Zhang Yi-Ming,Chen Huey-Ing,Brimblecombe Peter,Lee Chon-Lin

Abstract

Marine plastic debris is an environmental problem, and its degradation into microplastics (1-5000 μm) introduces them into the food chain. In this study, small polyoxymethylene (global production ~3000 Tg per year) pellets were exposed in terrestrial and simulated marine environments to heat and light, resulting in cracking during decay with increasing IR absorption (OH-bonds). Furthermore, sunlight over three years reduced pellet mass and diameter (~10% and ~40%), initially yielding 100-300 μm fragments. Changes under UV irradiation were smaller as it could not penetrate into particle interiors. Characteristic spacing of surface striations (100-300 µm) initiated radial cracks to pellet interiors, and breakdown ultimately meant 95% of particles were <300 µm, which are potentially incorporated in marine turbidites.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3