Bacterial Metabolic Response to Change in Phytoplankton Communities and Resultant Effects on Carbon Cycles in the Amundsen Sea Polynya, Antarctica

Author:

Kim Bomina,Kim Sung-Han,Min Jun-Oh,Lee Youngju,Jung Jinyoung,Kim Tae-Wan,Lee Jae Seong,Yang Eun Jin,Park Jisoo,Lee SangHoon,Hyun Jung-Ho

Abstract

We investigated changes in heterotrophic bacterial metabolic activities and associated carbon cycles in response to a change in dominant phytoplankton communities during two contrasting environmental conditions in austral summer in the Amundsen Sea polynya (ASP), Antarctica: the closed polynya condition in 2014 (ANA04) and the open polynya condition in 2016 (ANA06). In ANA04, Phaeocystis antarctica predominated phytoplankton biomass, comprising 78% of total phytoplankton carbon biomass, whereas diatoms and Dictyocha speculum accounted for 45% and 48% of total phytoplankton carbon biomass, respectively, in ANA06. Bacterial production (BP) showed a significant positive correlation with only chlorophyll-a (Chl-a, rho = 0.66, p < 0.001) in P. antarctica-dominated ANA04, whereas there were significant positive relationships of BP with various organic carbon pools, such as chromophoric dissolved organic matter (CDOM, rho = 0.84, p < 0.001), Chl-a (rho = 0.59, p < 0.001), and dissolved organic carbon (DOC, rho = 0.51, p = 0.001), in ANA06 when diatoms and D. speculum co-dominated. These results indicate that BP depended more on DOC directly released from P. antarctica in ANA04, but was supported by DOC derived from various food web processes in the diatom-dominated system in ANA06. The BP to primary production (BP : PP) ratio was three-fold higher in P. antarctica-dominated ANA04 (BP: PP = 0.09), than in diatom- and D. speculum-co-dominated ANA06 (BP : PP = 0.03). These results suggested that the microbial loop is more significant in Phaeocystis-dominated conditions than in diatom-dominated conditions. In addition, the decreases in BP : PP ratio and bacterial respiration with increasing diatom proportion in the surface mixed layer indicated that the change from P. antarctica to diatom predominance enhanced biological carbon pump function by increasing particulate organic carbon export efficiency. Consequently, our results suggest that bacterial metabolic response to shifts in phytoplankton communities could ultimately affect larger-scale ecological and biogeochemical processes in the water column of the ASP.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3