From Phenotypes to Genotypes and Back: Toward an Integrated Evaluation of Biodiversity in Calanoid Copepods

Author:

Di Capua Iole,D’Angiolo Rosa,Piredda Roberta,Minucci Carmen,Boero Ferdinando,Uttieri Marco,Carotenuto Ylenia

Abstract

Zooplankton molecular analyses allow for accurate species identification with a proper molecular signature, complementing classic phenotypic-based taxonomy (α taxonomy). For the first time in the Mediterranean Sea, cytochrome oxidase I (COI) gene sequences of calanoid copepods were associated with morphological identification, HD and SEM images, using a fully integrated approach to assess taxonomic diversity. Such method was applied to selected species, generating consensus sequences from the Gulf of Naples (Central Tyrrhenian Sea, Western Mediterranean Sea) also including reference barcodes of three target species (Nannocalanus minor, Pleuromamma gracilis and the non-indigenous species (NIS) Pseudodiaptomus marinus) that are new for the Mediterranean area. The new barcodes were selected including: dominant and rare species; species that were originally described in the study area as type locality, but lacking a molecular description; emergent NIS and potential species complex. The integration between morphological and molecular identification by tree placement, using species-specific highly conserved oligonucleotides, also provided new and high-quality references of the most common and abundant copepod genera and species in the Mediterranean Sea. Our regional reference library was then integrated and analyzed with global data reference available on BOLD database to explore the presence of potential cryptic species and biogeographic patterns and links among geographically distant populations of copepods. Overall, this study provides valuable insight into the actual copepod taxonomic diversity and contributes to building baseline knowledge to monitor coastal biodiversity in neritic areas worldwide, where copepods are of paramount ecological importance, paving the way for future metabarcoding studies.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3