Assessing seasonal and interannual changes in carbonate chemistry across two time-series sites in the North Western Mediterranean Sea

Author:

Wimart-Rousseau Cathy,Wagener Thibaut,Bosse Anthony,Raimbault Patrick,Coppola Laurent,Fourrier Marine,Ulses Caroline,Lefèvre Dominique

Abstract

Sustained time-series measurements are crucial to understand changes in oceanic carbonate chemistry. In the North Western Mediterranean Sea, the temporal evolution of the carbonate system is here investigated based on two 10-year time-series (between January 2010 and December 2019) of monthly carbonate parameters measurements at two sampling sites in the Ligurian Sea (ANTARES and DYFAMED). At seasonal timescale, the seawater partial pressure of CO2 (pCO2) within the mixed layer is mostly driven by temperature at both sites, and biological processes as stated by the observed relationships between total inorganic carbon (CT), nitrate and temperature. This study suggests also that mixing and water masses advection could play a role in modulating the CT content. At decadal timescale, significant changes in ocean chemistry are observed with increasing trends in CT (+3.2 ± 0.9 µmol.kg−1.a−1 – ANTARES; +1.6 ± 0.8 µmol.kg−1.a−1 – DYFAMED), associated with increasing pCO2 trends and decreasing trends in pH. The magnitude of the increasing trend in CT at DYFAMED is consistent with the increase in atmospheric pCO2 and the anthropogenic carbon transport of water originating from the Atlantic Ocean, while the higher trends observed at the ANTARES site could be related to the hydrological variability induced by the variability of the Northern Current.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference108 articles.

1. On the seasonal and mesoscale variabilities of the Northern Current during the PRIMO-0 experiment in the western Mediterranean Sea;Albérola;Oceanol. Acta,1995

2. The CO2 system in the Mediterranean Sea: a basin wide perspective;Álvarez;Ocean Sci.,2014

3. One-month study in the open NW Mediterranean Sea (DYNAPROC experiment, May 1995): overview of the hydrobiogeochemical structures and effects of wind events;Andersen;Deep Sea Res. Part I,2000

4. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification;Bates;Oceanography,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3