Carbonate contourite drifts in the southwest South China Sea: Sedimentary, paleoceanographic and economic implications

Author:

Liu Shan,Liang Zijun,Zhang Boda,Su Haixia,Lei Zhenyu,Su Ming

Abstract

Contourite drifts are significant sedimentary features and provide clues for the reconstruction of paleoceanography and paleoenvironment. Although they have been increasingly identified in the world’s ocean, shallow-water contourite drifts (< 300 m depth) remain poorly understood and the examples are rare. This study documents a Middle Miocene shallow-water contourite depositional system in the southwest South China Sea by interpreting seismic reflection data and calibrating results with the previous chronological framework. The depositional system consisted of six mounded drifts and six moats. The contourite features were generated in seismic unit III (16-10.5 Ma) and distributed adjacent to carbonate reefs. They were formed on the proto-continental shelf (50-200 m depth) and shaped by the wind-driven currents. Changes in the sedimentary stacking patterns suggest three evolutionary stages of the contourite features. Stage I represents the growth of the Middle Miocene contourite depositional system between 16 and 10.5 Ma. Stage II marks the termination of carbonate drifts and the burial of the Late Miocene sedimentation during 10.5-5.3 Ma. Stage III started with the development of modern deep-water sedimentary systems since 5.3 Ma. The contourite features are compared with the examples on other South China Sea margins. Significant changes in the paleoceanography occurred at 10.5 Ma and 6.5-5.3 Ma when the dominated bottom currents shifted from the monsoonal wind-driven currents to the North Pacific waters, and then the modern circulation system. The Middle Miocene mounded drifts were likely sourced by the coarse-grained carbonate sands. Fluid flow escaped from the coarse-grained contourite layers and natural gas leakage occurs on the seafloor. Shallow-water carbonate contourite drifts can be served as a good gas reservoir and have great economic potential.

Funder

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3