Characterizing Geomorphology of Mesophotic Coral Reef Ecosystems in the Southwestern Gulf of Mexico: Implications for Conservation and Management

Author:

Mayorga-Martínez Melissa,Bello-Pineda Javier,Perales-Valdivia Héctor,Pérez-España Horacio,Heyman William D.

Abstract

Coral reefs are the most biodiverse ecosystems on earth and are presently experiencing severe declines globally. Shallow coral reef ecosystems (<30 m) have been studied extensively while mesophotic coral ecosystems (MCE) are poorly studied. As a result, MCE are rarely included in marine reserve design and management, despite their ecological importance and connectivity to shallow reefs. In this study, we assessed the fine-scale topographic complexity, a proxy for structural complexity, for a group of coastal coral reefs in a marine park in the southwestern Gulf of Mexico, in depths between 2 and 49 m. We conducted hydrographic surveys using a semi-portable multibeam echosounder system to produce 3D bathymetry digital terrain models (DTM) with a 2.5 m spatial resolution for three submerged bank reefs and two emerging reefs. From these models, descriptive terrain parameters were calculated for each reef, including slope, aspect, curvature, rugosity and ruggedness. Results show that all reefs are predominantly northeast-southwest oriented, with well-defined leeward and windward sides. For the three submerged bank reefs, structural complexity increased with depth. Estimated mean ruggedness and rugosity were highest at 20–40 m depth range on windward side slopes. Emerging reefs showed high structural complexity, particularly at the 25–40 m depth range. We identified a spur and groove zone with maximum ruggedness (0.26) and rugosity (3.17) values, and four channels with steep slopes (68°) and dispersed mounds. We found that at mesophotic depths (>30 m), southern reefs basements from two distinct reefs merge to form a continuous complex. This has important management implications since presently, only 28.7% of this reef complex (mostly shallow areas) are within the existing limits of the marine park’s core zone. Considering the newly recognized importance of MCE, we propose expanding and reshaping the core zone to include the entire reef complex which mostly encompasses MCE with high structural complexity. Our study illustrates the value of semi-portable MBES for marine planning in developing countries and remote poorly studied areas.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3