Elasmobranch Responses to Experimental Warming, Acidification, and Oxygen Loss—A Meta-Analysis

Author:

Santos Catarina Pereira,Sampaio Eduardo,Pereira Beatriz P.,Pegado Maria Rita,Borges Francisco O.,Wheeler Carolyn R.,Bouyoucos Ian A.,Rummer Jodie L.,Frazão Santos Catarina,Rosa Rui

Abstract

Despite the long evolutionary history of this group, the challenges brought by the Anthropocene have been inflicting an extensive pressure over sharks and their relatives. Overexploitation has been driving a worldwide decline in elasmobranch populations, and rapid environmental change, triggered by anthropogenic activities, may further test this group's resilience. In this context, we searched the literature for peer-reviewed studies featuring a sustained (>24 h) and controlled exposure of elasmobranch species to warming, acidification, and/or deoxygenation: three of the most pressing symptoms of change in the ocean. In a standardized comparative framework, we conducted an array of mixed-model meta-analyses (based on 368 control-treatment contrasts from 53 studies) to evaluate the effects of these factors and their combination as experimental treatments. We further compared these effects across different attributes (lineages, climates, lifestyles, reproductive modes, and life stages) and assessed the direction of impact over a comprehensive set of biological responses (survival, development, growth, aerobic metabolism, anaerobic metabolism, oxygen transport, feeding, behavior, acid-base status, thermal tolerance, hypoxia tolerance, and cell stress). Based on the present findings, warming appears as the most influential factor, with clear directional effects, namely decreasing development time and increasing aerobic metabolism, feeding, and thermal tolerance. While warming influence was pervasive across attributes, acidification effects appear to be more context-specific, with no perceivable directional trends across biological responses apart from the necessary to achieve acid-base balance. Meanwhile, despite its potential for steep impacts, deoxygenation has been the most neglected factor, with data paucity ultimately precluding sound conclusions. Likewise, the implementation of multi-factor treatments has been mostly restricted to the combination of warming and acidification, with effects approximately matching those of warming. Despite considerable progress over recent years, research regarding the impact of these drivers on elasmobranchs lags behind other taxa, with more research required to disentangle many of the observed effects. Given the current levels of extinction risk and the quick pace of global change, it is further crucial that we integrate the knowledge accumulated through different scientific approaches into a holistic perspective to better understand how this group may fare in a changing ocean.

Funder

Fundação para a Ciência e a Tecnologia

Natural Sciences and Engineering Research Council of Canada

Centre of Excellence for Coral Reef Studies, Australian Research Council

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference152 articles.

1. Framing and context of the report - intergovernmental panel on climate change special report on oceans and cryosphere in a changing climate;Abram;IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,2019

2. Modeling climate change impacts on phenology and population dynamics of migratory marine species;Anderson;Ecol. Model.,2013

3. Temperature and organism size: a biological law for ectotherms?;Atkinson;Adv. Ecol. Res.,1994

4. Fish body sizes change with temperature but not all species shrink with warming;Audzijonyte;Nat. Ecol. Evol.,2020

5. Anticipated effects of climate change on coastal upwelling ecosystems;Bakun;Curr. Clim. Change Rep.,2015

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3