Effects of feed transition on digestive tract digestive enzyme, morphology and intestinal community in cuttlefish (Sepia pharaonis)

Author:

Jiang Maowang,Xiao Wencheng,Ye Jingtao,Xu Liting,Peng Ruibing,Han Qingxi,Lü Zhenming,Shi Huilai,Jiang Xiamin

Abstract

Sepia pharaonis is an excellent candidate for aquaculture in China. However, the low survival rate during early feed transition is a bottleneck restricting industrial development. Understanding the changes in digestive physiology and intestinal microflora during feed transition should enable us to meet their nutritional needs to improve production. In this study, we investigate the digestive enzyme of S. pharaonis and undertake histological observations of the digestive gland and intestine. The intestinal microflora 16S rRNA genes were also analyzed using high-throughput sequencing of the pre, mid, and post-feed transition stages (20, 40, and 60 days post-hatching (DPH), respectively). The digestive enzymes from the digestive gland (trypsin and chymotrypsin) rapidly decrease at 40 DPH when compared to their levels at 20 DPH, but mostly recovered by 60 DPH. The alkaline phosphatase and lipase increased sharply by 40 DPH, then peaked at 60 DPH. The intestinal digestive enzymes followed similar trends during feed transition, except for lipase activity, which decreased after 20 DPH and remained low, even at 60 DPH. Feed transition affects the morphogenesis of the digestive tract and feed transition stress leads to the impairment of the digestive gland and intestinal morphology, which reduces the digestive capacity, but almost totally recovers by 60 DPH. Moreover, the comparison of the intestinal microbial composition during feed transition revealed that the dominant phylum Bacteroidetes gradually increased to a peak at 40 DPH and then decreased until 60 DPH. The microbial composition changed with the most abundant genus Pseudomonas being replaced by Acinetobacter. The phylum and family level investigation suggested the microbiota in the rearing water had limited influence on the intestinal microbiota. The intestinal microbiota diversity increased during feed transition. This study improves our understanding of changes and adaptations in cuttlefish during feed transition.

Funder

Ningbo Municipal Bureau of Science and Technology

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3