Constraining CMIP6 estimates of Arctic Ocean temperature and salinity in 2025-2055

Author:

Langehaug Helene Reinertsen,Sagen Hanne,Stallemo A.,Uotila Petteri,Rautiainen L.,Olsen Steffen Malskær,Devilliers Marion,Yang Shuting,Storheim E.

Abstract

Global climate models (CMIP6 models) are the basis for future predictions and projections, but these models typically have large biases in their mean state of the Arctic Ocean. Considering a transect across the Arctic Ocean, with a focus on the depths between 100-700m, we show that the model spread for temperature and salinity anomalies increases significantly during the period 2025-2045. The maximum model spread is reached in the period 2045-2055 with a standard deviation 10 times higher than in 1993-2010. The CMIP6 models agree that there will be warming, but do not agree on the degree of warming. This aspect is important for long-term management of societal and ecological perspectives in the Arctic region. We therefore test a new approach to find models with good performance. We assess how CMIP6 models represent the horizontal patterns of temperature and salinity in the period 1993-2010. Based on this, we find four models with relatively good performance (MPI-ESM1-2-HR, IPSL-CM6A-LR, CESM2-WACCM, MRI-ESM2-0). For a more robust model evaluation, we consider additional metrics (e.g., climate sensitivity, ocean heat transport) and also compare our results with other recent CMIP6 studies in the Arctic Ocean. Based on this, we find that two of the models have an overall better performance (MPI-ESM1-2-HR, IPSL-CM6A-LR). Considering projected changes for temperature for the period 2045-2055 in the high end ssp585 scenario, these two models show a similar warming in the Mid Layer (300-700m; 1.1-1.5°C). However, in the low end ssp126 scenario, IPSL-CM6A-LR shows a considerably higher warming than MPI-ESM1-2-HR. In contrast to the projected warming by both models, the projected salinity changes for the period 2045-2055 are very different; MPI-ESM1-2-HR shows a freshening in the Upper Layer (100-300m), whereas IPSL-CM6A-LR shows a salinification in this layer. This is the case for both scenarios. The source of the model spread appears to be in the Eurasian Basin, where warm waters enter the Arctic. Finally, we recommend being cautious when using the CMIP6 ensemble to assess the future Arctic Ocean, because of the large spread both in performance and the extent of future changes.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3