Roles of Iron Limitation in Phytoplankton Dynamics in the Western and Eastern Subarctic Pacific

Author:

Zhang Hao-Ran,Wang Yuntao,Xiu Peng,Qi Yiquan,Chai Fei

Abstract

The subarctic Pacific is one of the major high-nitrate, low-chlorophyll (HNLC) regions where marine productivity is greatly limited by the supply of iron (Fe) in the region. There is a distinct seasonal difference in the chlorophyll concentrations of the east and west sides of the subarctic Pacific because of the differences in their driving mechanisms. In the western subarctic Pacific, two chlorophyll concentration peaks occur: the peak in spring and early summer is dominated by diatoms, while the peak in late summer and autumn is dominated by small phytoplankton. In the eastern subarctic Pacific, a single chlorophyll concentration peak occurs in late summer, while small phytoplankton dominate throughout the year. In this study, two one-dimensional (1D) physical–biological models with Fe cycles were applied to Ocean Station K2 (Stn. K2) in the western subarctic Pacific and Ocean Station Papa (Stn. Papa) in the eastern subarctic Pacific. These models were used to study the role of Fe limitation in regulating the seasonal differences in phytoplankton populations by reproducing the seasonal variability in ocean properties in each region. The results were reasonably comparable with observational data, i.e., cruise and Biogeochemical-Argo data, showing that the difference in bioavailable Fe (BFe) between Stn. K2 and Stn. Papa played a dominant role in controlling the respective seasonal variabilities of diatom and small phytoplankton growth. At Stn. Papa, there was less BFe, and the Fe limitation of diatom growth was two times as strong as that at Stn. K2; however, the difference in the Fe limitation of small phytoplankton growth between these two regions was relatively small. At Stn. K2, the decrease in BFe during summer reduced the growth rate of diatoms, which led to a rapid reduction in diatom biomass. Simultaneously, the decrease in BFe had little impact on small phytoplankton growth, which helped maintain the relatively high small phytoplankton biomass until autumn. The experiments that stimulated a further increase in atmospheric Fe deposition also showed that the responses of phytoplankton primary production in the eastern subarctic Pacific were stronger than those in the western subarctic Pacific but contributed little to primary production, as the Fe limitation of phytoplankton growth was replaced by macronutrient limitation.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3