Spatiotemporal variations of tidal flat landscape patterns and driving forces in the Yangtze River Delta, China

Author:

Cheng Shuo,Zeng Xu,Wang Zihan,Zeng Cong,Cao Ling

Abstract

As a crucial coastal wetland habitat in the transition zone between land and sea, global tidal flats have severely declined by 16% over the last two decades under the dual threats of intense human activities and climate change. The Yangtze River Delta of China, the largest estuary in the western Pacific Ocean, has abundant mudflat resources and a dense human population. It also has some of the most prominent conflicts between economic development and ecological conservation. The current lack of understanding of landscape patterns and influencing factors of the Yangtze River Delta mudflats has severely hampered the region’s ecological conservation and restoration efforts. Based on Landsat time-series images, this study generated a 30-m spatial resolution map of mudflats in the Yangtze River Delta, which shrank by 47% during 1990–2020, with a higher density of mudflat loss in Yancheng and Nantong cities of the Jiangsu province and Hangzhou, Shaoxing, and Ningbo cities of the Zhejiang province. Landscape indices, such as the patch density of tidal flats, have gradually changed since 2000, with most of them showing significant changes in 2010. Mudflats in Lianyungang, northwestern Yancheng, Nanhui, Jiaxing, and Hangzhou showed sharp negative changes in landscape characteristics. Natural and anthropogenic factors had synergistic effects on the above changes in mudflat landscape patterns in the Yangtze River Delta. Mudflat landscape features were mainly influenced by population growth, economic development, reclamation, sediment discharge, and air temperature. Based on the evolving characteristics of mudflat landscape patterns, we recommend improving mudflat landscape management and planning by strengthening mudflat policies, laws, and regulations, developing countermeasures against threats from major stressors, and enhancing the effectiveness of nature reserves for mudflat protection.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3