No apparent cost of disease resistance on reproductive output in Acropora cervicornis genets used for active coral reef restoration in Florida

Author:

Koch Hanna R.,Azu Yuen,Bartels Erich,Muller Erinn M.

Abstract

As assisted sexual reproduction interventions continue to become embedded within coral reef restoration initiatives, it is important to understand the potential for trade-offs between key traits like reproductive output and disease resistance. Oocyte size and fecundity, quantitative measures of reproductive output and important life-history traits, can be used as proxies for coral reproductive success and health. Sexual reproduction, particularly gametogenesis, is an energetically costly process and at the physiological level, trade-offs are caused by competitive allocation of limited resources to various functions. However, resource allocation trade-offs may also have a genetic basis, and thus, different genets may differ in these aspects. Therefore, the purpose of this study was to assess the reproductive output of A. cervicornis genets with known white-band disease resistance or susceptibility by quantifying the number and size of oocytes within colonies maintained within Mote Marine Laboratory’s offshore coral spawning nursery in the Lower Florida Keys, USA. We also quantified the number of eggs and sperm packaged within gamete bundles that were collected during the August 2020 spawning event. Consistent with previous studies, we found a positive correlation between colony size and fecundity. Interestingly though, we found no evidence for a trade-off between disease resistance and reproductive output and instead found a negative correlation between disease susceptibility and oocyte size. These data are relevant for population management interventions and for managing broodstock used for active restoration where a suite of corals with different genotypes and phenotypes are continuously propagated and outplanted. Having a more comprehensive understanding of the fitness differences among candidates can help guide such efforts and ensure that a diversity of fit genets is used for restoration, which should ultimately support greater adaptive potential and population resilience.

Funder

National Science Foundation

Deutsche Forschungsgemeinschaft

Mote Marine Laboratory and Aquarium

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3