A 17-year time-series of diatom populations‘ flux and composition in the Mauritanian coastal upwelling

Author:

Romero Oscar E.,Ramondenc Simon

Abstract

Understanding seasonal and multiyear variability of primary producers’ populations in the Mauritanian coastal upwelling system along the northwestern African margin may help to predict future impact of climate change (e.g., nutrient availability, productivity, and phyto- and zooplankton dynamics). For this, continuous, long time-series are required. A major challenge in obtaining these time-series is the logistics associated with the uninterrupted, in-situ sampling over several years. Sediment traps represent a reliable alternative. In this study, we assess the variations of the diatom community in samples almost continuously collected between June 2003 and March 2020 with 17 sediment traps deployed at site CBeu (=Cape Blanc eutrophic), located at c. 20°N-18°45’W, offshore Mauritania in the Canary Current Eastern Boundary Upwelling Ecosystems (CC-EBUE). In addition to describing the multiyear dynamics of the total diatom flux and major shifts in the species-specific composition of the populations, our study addresses questions such as (i) how constant is the intrannual pattern of populations’ occurrence, (ii) what the amplitude of annual changes is, and (iii) how populations’ shifts relate to physical setting dynamics. Matching the occurrence of most intense seasonal upwelling, highest diatom flux maxima mainly occur in spring and summer between 2003 and 2020. The diverse diatom community (e.g., benthic, coastal upwelling, coastal planktonic, and open-ocean diatoms) closely follows the annual cycle of atmospheric and hydrologic conditions. Benthic diatoms dominate during spring and summer (e.g., upwelling season), while open-ocean diatoms contribute the most in fall and winter when the upper water column stratifies. As no persistent –either decreasing or increasing trend of diatom productivity over the 17 sampled years, our results are at odds with Bakun’s hypothesis of upwelling intensification. Anchoring temporal changes of diatoms in a wider environmental frame allows for insights into the complex dynamics of the Mauritanian upwelling ecosystem and the populations’ response to climate forcing. This helps in establishing the scientific basis for modeling future states of the CC-EBUE and/or comparable environments.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3