Genetic connectivity in Twospot flounder (Bothus robinsi) across the Gulf of Mexico, inferred with single nucleotide polymorphisms from larvae and adults

Author:

Morales-Pulido José Manuel,Munguia-Vega Adrian,Jiménez-Rosenberg Sylvia Patricia A.,Rocha-Olivares Axayacatl,Galindo-Sánchez Clara E.

Abstract

Larval genetic information influences populations’ genetic pools, causing genetic homogenization or structuration. So, knowing about adult and larval genetic information is essential to understand processes such as connectivity. The aims are to evaluate Twospot flounder (Bothus robinsi, a fish with a high dispersal potential) larval pools’ genetic diversity, test if the larvae tend to mix or display collective dispersal, compare genetic information between larvae and adults and evaluate its connectivity. We used ddRADSEQ to genotype 1,034 single nucleotide polymorphic sites from B. robinsi larvae sampled in waters from the Bay of Campeche and the eastern Gulf of Mexico (GOM) and adults sampled on Florida’s continental shelf. Larvae were identified morphologically and by DNA barcoding. We estimated Fst-paired comparations, Principal Components Analysis (PCA), Discriminant Analyses of Principal Components (DAPC), and a Structure analysis to understand genetic trends. With the software COLONY, we made a sibship evaluation. We observed no significant heterogeneity among regions (Fst p-values>0.05). PCA, DAPC, and the Structure Analysis showed one genetic cluster, indicating genetic homogeneity. We did not detect full-sibs or half-sibs. We linked the results with the high dispersal potential of B. robinsi due to a long pelagic larval duration and the potential of ocean dynamics to transport and mix larvae from all GOM shelf areas. These findings suggest that the dispersal potential of B. robinsi is large enough to produce genetic connectivity in all GOM subpopulations and that time spent by its larvae in dispersal pathways is enough to mix larvae from different GOM subpopulations, indicating a panmictic population.

Funder

Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3