Assessment of Benthic Ecological Quality Status Using Multi-Biotic Indices Based on Macrofaunal Assemblages in a Semi-Enclosed Bay

Author:

Lu Xin,Xu Jing,Xu Zhaodong,Liu Xiaoshou

Abstract

Semi-enclosed bays have physical and chemical characteristics influenced by both land and sea systems and the quality of the benthic environment is always of great concern. Macrofauna are considered good indicators for evaluating the benthic ecological quality status owing to their biological characteristics. In this study, six biotic indices, namely the Shannon–Wiener diversity index (H′), Abundance-Biomass Comparison (ABC) curve, AZTI’s Marine Biotic Index (AMBI), multivariate-AMBI (M-AMBI), BOPA index, and BENTIX index, were used to evaluate the adaptability of different biological indices in the bioassessment of the benthic environment in a semi-enclosed bay. In the annual environmental assessment of the study area, the average values of the six indices (H′, ABC curve, AMBI, M-AMBI, BOPA, and BENTIX) were 4.494, 0.182, 2.433, 0.791, 0.033, and 3.813, respectively; accordingly, H′, M-AMBI, and BOPA met the high standards whereas the other indices met the good standards, indicating that the whole study bay was slightly disturbed and had good ecological quality. From the perspective of spatial variation, the benthic environment in the middle of the bay was better than that in the north; the environmental problems in the northeast were particularly noteworthy. In terms of temporal patterns, the benthic environment in winter and summer was significantly better than that in spring and autumn, with obvious seasonal differences. The present results indicate that the H′ and ABC curve based on benthic abundance and biomass should be avoided for environmental assessment in mariculture areas. AMBI and M-AMBI should be used with caution when the percentage of unassigned species is high, in which case H′ is the appropriate choice. When there are few unassigned species, M-AMBI is more conducive for accurate evaluation of the benthic environment than AMBI and H′.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3