Using deep learning to assess temporal changes of suspended particles in the deep sea

Author:

Saito Naoki,Washburn Travis W.,Yano Shinichiro,Suzuki Atsushi

Abstract

While suspended particles play many important roles in the marine environment, their concentrations are very small in the deep sea, making observation difficult with existing methods: water sampling, optical sensors, and special imaging systems. Methods are needed to fill the lack of environmental baseline data in the deep sea, ones that are inexpensive, quick, and intuitive. In this study we applied object detection using deep learning to evaluate the variability of suspended particle abundance from images taken by a common stationary camera, “Edokko Mark 1”. Images were taken in a deep-sea seamount in the Northwest Pacific Ocean for approximately one month. Using the particles in images as training data, an object detection algorithm YOLOv5 was used to construct a suspended particle detection model. The resulting model successfully detected particles in the image with high accuracy (AP50 > 85% and F1 Score > 82%). Similarly high accuracy for a site not used for model training suggests that model detection accuracy was not dependent on one specific shooting condition. During the observation period, the world’s first cobalt-rich ferromanganese crusts excavation test was conducted, providing an ideal situation to test this model’s ability to measure changes in suspended particle concentrations in the deep sea. The time series showed relatively little variability in particle counts under natural conditions, but there were two turbidity events during/after the excavation, and there was a significant difference in numbers of suspended particles before and after the excavation. These results indicate that this method can be used to examine temporal variations both in small amounts of naturally occurring suspended particles and large abrupt changes such as mining impacts. A notable advantage of this method is that it allows for the possible use of existing imaging data and may be a new option for understanding temporal changes of the deep-sea environment without requiring the time and expense of acquiring new data from the deep sea.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3