Ecological Functions of Polychaetes Along Estuarine Gradients

Author:

Martins Amanda Domingues,Barros Francisco

Abstract

Function in ecology can be understood as the role that each component plays in the surrounding environment. It can be studied through the functional traits of organisms and depends on variations of abundance in time and space. Nevertheless, traits should be clearly associated with functions. The functions performed by estuarine macrofauna along estuarine gradients and its variation in time are scarcely studied. We expected that the functional structure (i.e., the set of functions in a site) would not change significantly over estuarine gradients, even with changes in taxonomic composition, since different taxa may have similar traits, allowing the performance of the same functions. We used polychaete assemblages along three tropical estuaries sampled four different times, to test for differences in functional intensity between estuarine salinity zones (Venice system). From a literature search we selected the most frequent ecological functions performed by estuarine benthic assemblages and we explicitly established which polychaete functional traits, or combinations of traits, were directly related to these functions. Nutrient cycling, bioturbation and fragmentation of organic matter were the most frequent functions. We discovered that the last two were present throughout the entire salinity gradient (i.e., along different salinity zones) but with different intensities. The intensity of functions may also show significant variability in time. Nutrient cycling and fragmentation of organic matter showed strong variation among estuarine zones. Using traits explicitly associated with ecological functions is necessary to investigate function and function intensity. Future studies should investigate how precisely traits may alter specific environmental characteristics and ecosystem properties.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference91 articles.

1. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures;Aller;Nitrogen Cycling in Coastal Marine Environments,1988

2. Drivers of benthic metacommunity structure along tropical estuaries.;Alves;Sci. Res.,2020

3. Ecotone or ecocline: ecological boundaries in estuaries.;Attrill;Estuar. Coast. Shelf Sci.,2002

4. Estuarine, coastal and shelf science a framework for investigating general patterns of benthic b -diversity along estuaries.;Barros;Estuar. Coast. Shelf Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3