A carbonate system time series in the Eastern Mediterranean Sea. Two years of high-frequency in-situ observations and remote sensing

Author:

Frangoulis C.,Stamataki N.,Pettas M.,Michelinakis S.,King A. L.,Giannoudi L.,Tsiaras K.,Christodoulaki S.,Seppälä J.,Thyssen M.,Borges A.V.,Krasakopoulou E.

Abstract

The rate of ocean uptake of anthropogenic CO2 has declined over the past decade, so a critical question for science and policy is whether the ocean will continue to act as a sink. Large areas of the ocean remain without observations for carbonate system variables, and oceanic CO2 observations have declined since 2017. The Mediterranean Sea is one such an area, especially its eastern part, where there is a paucity of carbonate system data, with large areas not sampled or only sampled by ship-based discrete measurements as opposed to high frequency, sensor-equipped time-series fixed stations. The aim of this study was to analyze a multi-year time-series of high-frequency (hourly) partial pressure CO2 (pCO2) and pH measurements in the Eastern Mediterranean, along with low-frequency (monthly) measurements of total dissolved inorganic carbon and total alkalinity. The pCO2 time-series was the first obtained in the Eastern Mediterranean. The study was conducted at a fixed platform of the POSEIDON system (Heraklion Coastal Buoy) located near Crete Island. Temperature was the dominant factor controlling the temporal variability of pCO2 and pH, while the remaining non-thermal variability appeared to be related to evaporation, water mixing, and biological remineralization-production. The air-sea CO2 fluxes indicated a transition from a winter-spring sink period to a summer-autumn source period. The annual air-sea CO2 flux was too low (-0.16 ± 0.02 mol m-2 yr-1) and variable to conclusively characterize the area as a net source or sink of CO2, highlighting the need for additional high frequency observation sites. Algorithms were developed using temperature, chlorophyll and salinity data to estimate pCO2 and total alkalinity, in an effort to provide tools for estimates in poorly observed areas/periods from remotely sensed products. The applicability of the algorithms was tested using Surface Ocean CO2 Atlas (SOCAT) data from the Eastern Mediterranean Sea (1999 to 2020) which showed that the algorithm pCO2 estimates were generally within ±20 μatm of the pCO2 values reported by SOCAT. Finally, the integration and analysis of the data provided directions on how to optimize the observing strategy, by readapting sensor location and using estimation algorithms with remote sensing data.

Publisher

Frontiers Media SA

Reference93 articles.

1. Mediterranean Sea general biogeochemistry;Álvarez,2023

2. The CO2 system in the Mediterranean Sea: A basin wide perspective;Álvarez;Ocean Sci.,2014

3. BakkerD. C. E. AlinS. R. BatesN. R. BeckerM. FeelyR. A. GritzalisT. SOCAT version 2023 – An alarming decline in the ocean CO2023

4. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT);Bakker;Earth Syst. Sci. Data,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3