Dynamics of Probable Maximum Precipitation Within Coastal Urban Areas in a Convection-Permitting Regional Climate Model

Author:

Liang Ju,Yong Yangyang

Abstract

The west coast of Canada is strongly affected by the extreme precipitation events triggered by frequent atmospheric river (AR) activities over the eastern North Pacific. Across the region, assessing the probable maximum precipitation (PMP), can provide valuable information for resilience building of the coastal communities that are vulnerable to hydrological risks. In this study, a 3-km convection-permitting regional climate model is used to physically estimate the PMP in Vancouver. This technique maximizes the effect of AR-related water vapor transport by spatially adjusting the lateral boundary conditions (LBCs) of the model simulations for the selected AR-related extreme precipitation events. The PMP in Vancouver is identified among the simulations driven by the spatially adjusted LBCs that are corresponding with the AR-induced “worst-case scenario,” i.e., landfalling ARs hit Vancouver with optimal landfalling location and transport direction. Results suggest that the PMP in Vancouver, in terms of the maxima of the regionally averaged 72-h total precipitation for the historical extreme precipitation events, is up to 790 mm, which is 130% greater than the historical peak precipitation for the period 1980∼2017. On average, all the PMP simulations shows an overall increase by 81% in precipitation by relative to historical simulations. In addition, the PMP simulations suggested an overall decrease in snowfall by 12% due to the warmer near-surface air temperature; however, a pronounced increase in freezing rain is seen. The precipitation increase for the estimated PMP relative to the historical extreme precipitation is closely associated with the increased atmospheric moisture transport and the changes in the atmospheric dynamic factors when the AR effects are maximized. These include the enhanced low-tropospheric ascent and moisture transport convergence, which can induce stronger depletion of atmospheric moistures as indicated by the increased precipitation efficiency.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3