Vertical distributions of organic matter components in sea ice near Cambridge Bay, Dease Strait, Canadian Archipelago

Author:

Kim Kwanwoo,Ha Sun-Yong,Shin Kyung-Hoon,Kim Jee-Hoon,Mundy C. J.,Dalman Laura A.,Kim Bo Kyung,Lee Dabin,Jang Hyo Keun,Kim Yejin,Park Sanghoon,Lee Sang Heon

Abstract

Ice algae thriving within sea ice play a crucial role in transferring energy to higher trophic levels and influencing biogeochemical processes in polar oceans; however, the distribution of organic matter within the ice interior is not well understood. This study aimed to investigate the vertical distribution of organic matter, including chlorophyll a (Chl-a), particulate organic carbon and nitrogen (POC and PON), carbohydrates (CHO), proteins (PRT), lipids (LIP), and food material (FM), within the sea ice. Samples were collected from the bottom, middle, and top sections of the sea ice column near Cambridge Bay during the spring of 2018. Based on the δ13C signature, biochemical composition, and POC contribution of biopolymeric carbon (BPC), the organic substances within the sea ice were predominantly attributed to marine autotrophs. While the highest concentrations of each parameter were observed at the sea ice bottom, notable concentrations were also found in the upper sections. The average sea ice column-integrated Chl-a concentration was 5.05 ± 2.26 mg m−2, with the bottom ice section contributing 59% (S.D. = ± 10%) to the total integration. The column-integrated concentrations of FM, BPC, POC, and PON were 2.05 ± 0.39, 1.10 ± 0.20, 1.47 ± 0.25, and 0.09 ± 0.03 g m−2, respectively. Contributions of the bottom ice section to these column-integrated concentrations varied for each parameter, with values of 20 ± 6, 21 ± 7, 19 ± 5, and 28 ± 7%, respectively. While the bottom ice section exhibited a substantial Chl-a contribution in line with previous studies, significantly higher contributions of the other parameters were observed in the upper sea ice sections. This suggests that the particulate matter within the interior of the sea ice could potentially serve as an additional food source for higher trophic grazers or act as a seeding material for a phytoplankton bloom during the ice melting season. Our findings highlight the importance of comprehensive field measurements encompassing the entire sea ice section to better understand the distribution of organic carbon pools within the sea ice in the Arctic Ocean.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference95 articles.

1. The role of dissolved organic matter for the organic carbon cycle in the arctic ocean;Amon;Org. Carbon Cycle Arct. Ocean,2004

2. Sea ice ecosystems;Arrigo;Ann. Rev. Mar. Sci.,2014

3. Primary producers and sea ice;Arrigo,2010

4. Phytoplankton blooms beneath the sea ice in the Chukchi sea;Arrigo;Deep. Res. Part II Top. Stud. Oceanogr.,2014

5. Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and seawater near the North Pole at the end of the polar night;Bachy;Front. Microbiol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3