Evidence of population-level impacts and resiliency for Gulf of Mexico shelf taxa following the Deepwater Horizon oil spill

Author:

Patterson William F.,Robinson Kelly Lynn,Barnett Beverly K.,Campbell Matthew D.,Chagaris David C.,Chanton Jeffrey P.,Daly Kendra L.,Hanisko David S.,Hernandez Frank J.,Murawski Steven A.,Pollack Adam G.,Portnoy David S.,Pulster Erin L.

Abstract

The goal of this paper was to review the evidence of population-level impacts of theDeepwater HorizonOil Spill (DWH) on Gulf of Mexico (GOM) continental shelf taxa, as well as evidence of resiliency following the DWH. There is considerable environmental and biological evidence that GOM shelf taxa were exposed to and suffered direct and indirect impacts of the DWH. Numerous assessments, from mesocosm studies to analysis of biopsied tissue or tissue samples from necropsied animals, revealed a constellation of physiological effects related to DWH impacts on GOM biota, some of which clearly or likely resulted in mortality. While the estimated concentrations of hydrocarbons in shelf waters and sediments were orders of magnitude lower than measured in inshore or deep GOM environments, the level of mortality observed or predicted was substantial for many shelf taxa. In some cases, such as for zooplankton, community shifts following the spill were ephemeral, likely reflecting high rates of population turnover and productivity. In other taxa, such as GOM reef fishes, impacts of the spill are confounded with other stressors, such as fishing mortality or the appearance and rapid population growth of invasive lionfish (Pteroisspp.). In yet others, such as cetaceans, modeling efforts to predict population-level effects of the DWH made conservative assumptions given the species’ protected status, which post-DWH population assessments either failed to detect or population increases were estimated. A persistent theme that emerged was the lack of precise population-level data or assessments prior to the DWH for many taxa, but even when data or assessments did exist, examining evidence of population resiliency was confounded by other stressors impacting GOM biota. Unless efforts are made to increase the resolution of the data or precision of population assessments, difficulties will likely remain in estimating the scale of population-level effects or resiliency in the case of future large-scale environmental catastrophes.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3