How does climate change affect a fishable resource? The case of the royal sea cucumber (Parastichopus regalis) in the central Mediterranean Sea

Author:

Scannella Danilo,Bono Gioacchino,Di Lorenzo Manfredi,Di Maio Federico,Falsone Fabio,Gancitano Vita,Garofalo Germana,Geraci Michele Luca,Lauria Valentina,Mancuso Maria,Quattrocchi Federico,Sardo Giacomo,Titone Antonino,Vitale Sergio,Fiorentino Fabio,Massi Daniela

Abstract

Holothurians or sea cucumbers are key organisms in marine ecosystems that, by ingesting large quantities of sediments, provide important ecosystem services. Among them, Parastichopus regalis (Cuvier, 1817) is one of the living sea cucumbers in the Mediterranean actively fished for human consumption mainly in Spain, where it is considered a gastronomic delicacy. In the Strait of Sicily (central Mediterranean Sea), this species is not exploited for commercial use even if it is used as bait by longline fishery. P. regalis is frequently caught by bottom trawling and discarded at sea by fishers after catch, and because of its capacity to resist air exposition (at least in cold months), it is reasonable to consider that it is not affected by fishing mortality. Having observed a significant decrease in abundance since 2018, the possible effects of some ecological factors related to current climate change (i.e., temperature and pH) were sought. Generalized additive models (GAMs) were applied to investigate the relationship among the abundance of P. regalis and environmental variables and fishing effort. Long time series of P. regalis densities (2008–2021) were extracted from the MEDITS bottom trawling survey and modeled as function of environmental parameters (i.e., salinity, dissolved oxygen, ammonium, pH, and chlorophyll α) and fishing effort (i.e., total number of fishing days per gross tonnage). Our results showed that this species prefers the soft bottoms (50–200 m) of the Adventure Bank and Malta Plateau, and its distribution changed over time with a slight deepening and a rarefaction of spatial distribution starting from 2011 and 2017, respectively. In addition, a positive relationship with pH concentration in surface waters during the larval dispersal phase (3-year lag before the survey) and nutrient concentration at sea bottom (1-year lag) has been found, suggesting that this species is sensitive to climate change and food availability. This study adds new knowledge about the population dynamics of an unexploited stock of P. regalis under fishing impact and environmental under climate change in fisheries management.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference115 articles.

1. Demersal and epibenthic assemblages of trawlable grounds in the northern alboran Sea (western Mediterranean);Abad;Sci. Mar.,2007

2. Model selection for ecologists: The worldviews of AIC and BIC;Aho;Ecology,2014

3. Population structure of the traditionally exploited holothurian Holothuria tubulosa in the south Aegean Sea;Antoniadou;Cah. Biol. Mar.,2011

4. Effects of temperature, salinity and pH on larval growth, survival and development of the sea cucumber Holothuria spinifera theel;Asha;Aquaculture,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3