Collaborative Automation and IoT Technologies for Coastal Ocean Observing Systems

Author:

Mariani Patrizio,Bachmayer Ralf,Kosta Sokol,Pietrosemoli Ermanno,Ardelan Murat V.,Connelly Douglas P.,Delory Eric,Pearlman Jay S.,Petihakis George,Thompson Fletcher,Crise Alessandro

Abstract

Coastal observing systems are typically nationally funded and built around national priorities. As a result, there are presently significant differences between countries in terms of sustainability, observing capacity and technologies, as well as methods and research priorities. Ocean observing systems in coastal areas must now move toward an integrated, multidisciplinary and multiscale system of systems, where heterogeneity should be exploited to deliver fit-for-purpose products that answer the diversity and complexity of the requirements from stakeholders and end-users. Essential elements of such distributed observation systems are the use of machine-to-machine communication, data fusion and processing applying recent technological developments for the Internet of Things (IoT) toward a common cyberinfrastructure. This perspective paper illustrates some of the challenges for sustained coastal observations and provides details on how to address present gaps. We discuss the role of collaborative robotics between unmanned platforms in coastal areas and the methods to benefit from IoT technologies. Given present trends in cost-effective solutions in ocean sensors and electronics, and methods for marine automation and communication, we consider that a distributed observation system can effectively provide timely information in coastal regions around the world, including those areas that are today poorly observed (e.g., developing countries). Adaptation in space and time of the sensing nodes, and the flexibility in handling different sensing platforms can provide to the system the ability to quickly respond to the rapid changes in oceanic and climatic processes, as well as to promptly respond to evolving stakeholder and end-user requirements.

Funder

Horizon 2020 Framework Programme

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3