The Brazilian Santos basin underwater soundscape monitoring project (PMPAS-BS)

Author:

Lima José Antonio Moreira,Soares Filho William,Xavier Fabio C.,Paula Thiago Pires de,Spengler Angela,Almeida Fernando Gonçalves de,Pereira Diogo Peregrino Correa,Rego Valéria Souza,Galotta Cátia,Corrêa Junior Carlos,Bazyl Alexandre

Abstract

This paper describes the Santos Basin Underwater Soundscape Monitoring Project (PMPAS-BS), a Brazilian ocean soundscape monitoring initiative. The main objective of the project is to quantify and assess hydroacoustic noise of anthropogenic origin in a large sedimentary basin extending from 23° S to 28° S on the southeastern Brazilian continental margin of the South Atlantic Ocean. Noise associated with oil and gas (O&G) exploration and production activities is the primary target, but this oceanic region also has busy shipping lanes for commercial, military, and fishing vessels. The two main hubs of Brazil’s export and import of goods by sea are located in this region: Santos and Rio de Janeiro ports. The project has three measurement components: mobile monitoring based on gliders and drifting acoustic profilers, fixed shallow-water monitoring based on acoustic measurements at coastal stations near shipping lanes associated with exploration and production activities in the Santos Basin, and fixed oceanic monitoring based on deep-water mooring lines equipped with passive autonomous acoustic recorders near production units, shipping lanes, and areas with lower intensity of O&G activities (pristine or reference sites). Numerical modeling of anthropogenic underwater acoustic noise has also been included as a fourth project component. The PMPAS-BS covers an area of more than 251,000 km2 and uses several instruments with different methods and sensors for acoustic measurements. Its results provide current sound levels over a very large region of the western South Atlantic, both in areas more and less affected by anthropogenic activities.

Publisher

Frontiers Media SA

Reference66 articles.

1. Ocean sound propagation in a changing climate: global sound speed changes and identification of acoustic hotspots;Affatati;Earth’s Futur.,2022

2. Development and characterization of an autonomous underwater acoustic recording system;Alves,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3