Simulating the near-field dynamic plume behavior of disposed fine sediments

Author:

Gundlach Jannek,Herbst Maximilian,Alex Antje Svenja,Zorndt Anna,Jordan Christian,Visscher Jan,Schlurmann Torsten

Abstract

Projections of the effects of fine sediment disposals, relevant for managed estuaries and tidally influenced coastal areas, are typically based on numerical far-field models. For an accurate consideration of the disposal itself, near-field models are often needed. The open source near-field model, PROVER-M, simulates the relevant processes of the physics based, dynamic behavior of disposed fine sediments in coastal waters and is applied in this study. First, new small scale laboratory experiments of instantaneous disposals are presented, documenting the dynamic behavior of fine material disposed in shallow waters. Second, results of the PROVER-M model are shown for disposals in three different settings: (1) a field-scaled study complementary to the laboratory set-up, (2) a parametric study of sequentially varied model input and (3) a far-field model coupling for estimation of the PROVER-M impact. By comparing results of the laboratory experiments to the PROVER-M model, the physical behavior of PROVER-M is successfully validated. The impact of the ambient setting and dredged material parameters is evaluated by the PROVER-M simulations, where the results show non-linear, complex interdependencies of the input parameters on disposal properties in dependence of ambient site conditions and material composition. In this context, limits of the model application are assessed and critically discussed. Finally, an exemplary coupling to a far-field model based on a real set of disposals in the tidally influenced Weser estuary (Germany) illustrates the potential impact of PROVER-M for assessing far-field suspended sediment concentration (SSC), with increased maximum SSC values of up to 10%.

Publisher

Frontiers Media SA

Reference79 articles.

1. Safe disposal of dredged material in an environmentally sensitive environment;Aarninkhof;Port Technol. Int.,2010

2. Round buoyant jet in cross-flow;Abraham,1970

3. Beneficial use of dredged sediment to enhance salt marsh development by applying a ‘Mud Motor’;Baptist;Ecol. Eng.,2019

4. Recent morphologic evolution of the German Wadden Sea;Benninghoff;Sci. Rep.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3