Impacts of Marine Heatwaves on Algal Structure and Carbon Sequestration in Conjunction With Ocean Warming and Acidification

Author:

Gao Guang,Zhao Xin,Jiang Meijia,Gao Lin

Abstract

As the ocean warms, the frequency, duration, intensity, and range of marine heatwaves (MHWs) increase. MHWs are becoming a severe challenge for marine ecosystems. However, our understanding in regard to their impacts on algal structure and carbon sequestration is still deficient or fragmentary, particularly when combined with ocean warming and acidification. In this paper, we reviewed the impacts of MHWs individually and combined with ocean warming and acidification on regime shift in algal community and carbon sequestration of both macroalgae and microalgae. Solid evidence shows that MHWs cause the decline of large canopy macroalgae and increase of turf-forming macroalgae in abundance, leading to the regime shift from kelp forests to seaweed turfs. Furthermore, increased grazing pressure on kelps due to tropicalization facilitates the expansion of turfs that prevent the recovery of kelps through plundering light and space. Meanwhile, MHWs could trigger microalgal blooms and the intensity of algal blooms is regulated by the severity of MHWs and nutrient availability. MHWs could lead to the decrease of carbon burial and sequestration by canopy-forming macroalgae due to depressed growth and increased mortality. The effects of MHWs on the productivity of microalgae are latitude-dependent: negative effects at low and mid-latitudes whilst positive effects at high latitudes. Ocean warming and acidification may accelerate the shift from kelps to turfs and thus decrease the carbon sequestration by canopy-forming macroalgae further. We propose that MHWs combined with ocean warming and acidification would reduce the biodiversity and facilitate the thriving of morphologically simple, ephemeral and opportunistic turfs and diatoms in coastal oceans, and phytoplankton with smaller size in open oceans. This structure shift would not be in favor of long-term carbon sequestration. Future studies could be conducted to test this hypothesis and investigate the impacts of MHWs on carbon sequestration under future ocean conditions.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference107 articles.

1. Roles of disturbance, sediment stress, and substratum retention on spatial dominance in algal turf.;Airoldi;Ecology,1998

2. Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: implications for forest recovery.;Andersen;J. Mar. Biol.,2011

3. Summer and winter marine heatwaves favor an invasive over native seaweeds.;Atkinson;J. Phycol.,2020

4. Effects of climate change and episodic heat events on cyanobacteria in a eutrophic polymictic lake.;Bartosiewicz;Sci. Total Environ.,2019

5. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs.;Bennett;Ecol. Lett.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3