Author:
Visudtiphole Virak,Khudet Jutatip,Chaitongsakul Panomkorn,Plaisen Siwat,Siriwattano Jittima,Laiphrom Seansook,Klaysuban Anupong,Raweeratanapong Thaninthorn,Sittikankaew Kanchana,Rattanaphan Nakul,Koichai Looksorn,Unagul Panida,Uawisetwathana Umaporn
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for growth and health of larval marine animals. Marine animals have a limited capability for LC-PUFA synthesis, and the larvae must obtain LC-PUFAs from diet. The protist Aurantiochytrium limacinum (AL) is abundant in 22:6 n-3 (docosahexaenoic acid, DHA), 22:5 n-3 (docosapentaenoic acid, DPA) and 16:0 fatty acids, which qualifies it as an LC-PUFA source for feed application. Therefore, in this study, a common feed containing lower amounts of total LC-PUFAs, Thalasiosira weissflogii, was replaced with AL at graded proportions and supplied to Penaeus monodon larvae from mysis (M) 1 to post-larval (PL) 2 stages to supplement LC-PUFAs in the diet. After that, all shrimp from PL2 to PL12 were continuously reared and subjected to the same diet regime, which was a combination of Artemia and commercial dried feed. The AL-supplemented PL2 shrimp demonstrated marked accumulation of the key fatty acids present in AL—16:0, DPA and DHA. The supplemented larvae showed no difference in growth during the supplementation period from M1 to PL2; however, average body weight and biomass were increased in PL12 shrimp that were fed earlier with AL. Lipidomic analysis revealed that profiles of fatty acids but not lipid classes/subclasses in PL shrimp reflected the supplied diet. The main saturated fatty acid (SFA, 16:0) predominantly accumulated in acylglycerols, which are energy-reserve lipids, in PL2 shrimp. Both LC-PUFAs (DHA and DPA) were preferentially deposited in phospholipids or structural lipids. Furthermore, while the amounts of both LC-PUFAs increased along with the amount of supplied AL, that of the SFA did not. This suggests that LC-PUFAs were prioritized to be stored over SFA when both types of fatty acids were present in high amounts. This analysis substantiates the importance of LC-PUFAs and provides an insight into how different types of the dietary fatty acids were differentially accumulated in lipid classes and subclasses for their biological functions.
Funder
National Science and Technology Development Agency
Subject
Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献