Minding the Data-Gap Trap: Exploring Dynamics of Abundant Dolphin Populations Under Uncertainty

Author:

Ashe Erin,Williams Rob,Clark Christopher,Erbe Christine,Gerber Leah R.,Hall Ailsa J.,Hammond Philip S.,Lacy Robert C.,Reeves Randall,Vollmer Nicole L.

Abstract

Preventing declines in common species is key to sustaining the structure and function of marine ecosystems. Yet for many common marine mammals, including oceanic dolphins, statistical power to detect declines remains low due to patchy distribution and large variability in group sizes. In this study, population viability analyses (PVA) were used to model the dynamics of four oceanic dolphin populations off the United States West Coast: eastern North Pacific long-beaked common dolphins (Delphinus delphis capensis), short-beaked common dolphins (D. delphis delphis), Pacific white-sided dolphins (Lagenorhynchus obliquidens), and “offshore” common bottlenose dolphins (Tursiops truncatus). We calibrated the PVA with life-history tables, studies on proxy species, and stock assessment reports. We explored the sensitivity of populations to demographic variation and projected how they may respond to changes in three sublethal threats (prey limitation, ocean noise, and chemical pollution) and one lethal threat (fisheries bycatch). We found the most serious projected declines in long-beaked common dolphins, which showed the lowest birth rate. Most threat scenarios resulted in declines that would not be detected by existing monitoring programs in the United States, which are among the most data-rich surveys of their kind. The cumulative effects of the three sublethal stressors exceeded the effect of the one lethal stressor (fisheries bycatch). To implement pro-active management and monitoring programs, anticipating which cetaceans are more at risk and which anthropogenic threats could cause declines is paramount. Our study highlights the value of model testing with PVA when monitoring data are poor, thereby identifying priorities for future research, monitoring, and management.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Reference72 articles.

1. Geographical and temporal variation in levels of organochlorine contaminants in marine mammals.;Aguilar;Mar. Environ. Res.,2002

2. Abundance and population density of cetaceans in the California current ecosystem.;Barlow;Fish. Bull.,2007

3. Habitat partitioning by three species of dolphins in Santa Monica Bay, California.;Bearzi;Bull. South. Calif. Acad. Sci.,2005

4. Predicting the conservation status of data−deficient species.;Bland;Conserv. Biol.,2015

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3