Seasonal dynamics of global marine heatwaves over the last four decades

Author:

Wang Yishan,Zhou Yuntao

Abstract

Marine heatwaves (MHWs), prolonged periods of abnormally high sea temperature, have greater devastating impacts on marine ecosystem services and socioeconomic systems than gradual long-term ocean warming. Despite growing evidence of increases in MHW frequency, duration, and intensity, their interseasonal variations remain unclear. Using satellite-derived daily sea surface temperature (SST) data from 1982 to 2022, this work reveals a strong seasonality in MHWs. Typically, the highest cumulative intensity, characterizing total impacts on ecosystems, occurs during the local warm seasons in most oceans, leading to a significant interseasonal difference between warm and cold seasons. The interseasonal difference is predominantly driven by air-sea heat flux, rather than oceanic horizontal advection and vertical process. An increase in these interseasonal differences is observed in mid and high latitudes, with a significant increase in the warm season and a weaker trend in the cold season. In the Equatorial Pacific and Western Equatorial Indian Ocean, intense MHWs are primarily exacerbated by the El Niño-Southern Oscillation (ENSO), which also determines interseasonal variations in MHWs. Understanding the seasonality of MHWs can help better formulate corresponding policies to reduce economic and ecological losses caused by these events and can improve the accuracy of future predictions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3