A Clustering Approach for Predicting Dune Morphodynamic Response to Storms Using Typological Coastal Profiles: A Case Study at the Dutch Coast

Author:

Athanasiou Panagiotis,van Dongeren Ap,Giardino Alessio,Vousdoukas Michalis,Antolinez Jose A. A.,Ranasinghe Roshanka

Abstract

Dune erosion driven by extreme marine storms can damage local infrastructure or ecosystems and affect the long-term flood safety of the hinterland. These storms typically affect long stretches (∼100 km) of sandy coastlines with variable topo-bathymetries. The large spatial scale makes it computationally challenging for process-based morphological models to be used for predicting dune erosion in early warning systems or probabilistic assessments. To alleviate this, we take a first step to enable efficient estimation of dune erosion using the Dutch coast as a case study, due to the availability of a large topo-bathymetric dataset. Using clustering techniques, we reduce 1,430 elevation profiles in this dataset to a set of typological coastal profiles (TCPs), that can be employed to represent dune erosion dynamics along the whole coast. To do so, we use the topo-bathymetric profiles and historic offshore wave and water level conditions, along with simulations of dune erosion for a number of representative storms to characterize each profile. First, we identify the most important drivers of dune erosion variability at the Dutch coast, which are identified as the pre-storm beach geometry, nearshore slope, tidal level and profile orientation. Then using clustering methods, we produce various sets of TCPs, and we test how well they represent dune morphodynamics by cross-validation on the basis of a benchmark set of dune erosion simulations. We find good prediction skill (0.83) with 100 TCPs, representing a 93% input and associated computational costs reduction. These TCPs can be used in a probabilistic model forced with a range of offshore storm conditions, enabling national scale coastal risk assessments. Additionally, the presented techniques could be used in a global context, utilizing elevation data from diverse sandy coastlines to obtain a first order prediction of dune erosion around the world.

Funder

Horizon 2020

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3