Ecological Constraint Mapping: Understanding Outcome-Limiting Bottlenecks for Improved Environmental Decision-Making in Marine and Coastal Environments

Author:

Sheaves Marcus,Mattone Carlo,Connolly Rod M.,Hernandez Stephanie,Nagelkerken Ivan,Murray Nicholas,Ronan Michael,Waltham Nathan John,Bradley Michael

Abstract

Despite genuine attempts, the history of marine and coastal ecosystem management is littered with examples of poor environmental, social and financial outcomes. Marine ecosystems are largely populated by species with open populations, and feature ecological processes that are driven by multiple, interwoven, dynamic causes and effects. This complexity limits the acquisition of relevant knowledge of habitat characteristics, species utilisation and ecosystem dynamics. The consequence of this lack of knowledge is uncertainty about the link between action taken and outcome achieved. Such uncertainty risks misdirected human and financial investment, and sometimes may even lead to perverse outcomes. Technological advances offer new data acquisition opportunities, but the diversity and complexity of the biological and ecological information needed to reduce uncertainty means the increase in knowledge will be slow unless it is undertaken in a structured and focussed way. We introduce “Ecological Constraint Mapping” – an approach that takes a “supply chain” point of view and focusses on identifying the principal factors that constrain life-history outcomes (success/productivity/resilience/fitness) for marine and coastal species, and ultimately the quality and resilience of the ecosystems they are components of, and the life-history supporting processes and values ecosystems provide. By providing a framework for the efficient development of actionable knowledge, Ecological Constraint Mapping can facilitate a move from paradigm-based to knowledge-informed decision-making on ecological issues. It is suitable for developing optimal solutions to a wide range of conservation and management problems, providing an organised framework that aligns with current perspectives on the complex nature of marine and coastal systems.

Funder

James Cook University

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3