Sex-Specific Transcriptomic Differences in the Immune Cells of a Key Atlantic-Mediterranean Sea Urchin

Author:

Pérez-Portela Rocío,Leiva Carlos

Abstract

The abundance of the black sea urchin, Arbacia lixula, has been increasing during the last decades likely related to global warming. This thermophilous species has a leading role in maintaining marine barrens in the Mediterranean with the consequent negative impact on coastal rocky ecosystems due to its grazing activity. In this study, we used transcriptomic data from coelomocytes (the cell effectors of the immune system) of females and males of this sea urchin to study potential differences in performance between sexes under laboratory conditions. Differential adaptations, responses to environmental stressors, and resistance against pathogens between sexes may lead to different outcomes in the ongoing expansion of this species in the Mediterranean Sea. Differential expression analyses demonstrated the existence of 120 transcripts, corresponding to 119 genes and two isoforms of the same gene, differentially expressed between coelomocytes of females and males, being 73 up-regulated in males and 47 up-regulated in females. The differential expression patterns were retrieved from a diversity of genes that play different roles related to the immune response due to their antibacterial activity, immune cell activation, cell to cell interaction, intracellular signaling, and detoxification functioning, among others. Our results point out a higher energetic demand of male coelomocytes due to a higher immune activity than females, whereas females have more efficient molecular systems to avoid oxidative stress caused by infections. In conclusion, our study provides evidence of sex-based differences in the expression of genes related to the immune and stress responses in coelomocytes of the sea urchin A. lixula.

Funder

Ministerio de Ciencia e Innovación

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3