The Bioerosion of Submerged Archeological Artifacts in the Mediterranean Sea: An Overview

Author:

Sacco Perasso Carlotta,Antonelli Federica,Calcinai Barbara,Casoli Edoardo,Gravina Maria Flavia,Ricci Sandra

Abstract

Bioerosion is the destruction of hard substrates resulting from biological activity, and plays a relevant role in the ecological interactions and coastal dynamics processes. Several organisms have evolved structures and behaviors allowing them to perforate biotic and abiotic surfaces, transforming hard surfaces into particles, and contributing significantly to sediment production in the coastal and marine environment. Due to the large geographical diffusion of marine borers, bioerosion is relevant in many scientific and applied fields of interest. Most bioerosion studies have hitherto been conducted in tropical areas, where borers are a critical component of coral reef destruction. Comparatively, little information is available for the bioerosion of submerged archeological heritage. This review focuses on the bioerosion of archeological calcareous artifacts in the Mediterranean Sea, summarizing studies concerning the colonization of statues, shipwrecks, cargo, and the remains of submerged cities. The paper includes the first comprehensive listing of the archeological sites in the Mediterranean Sea where bioerosion has been assessed. The diversity of boring organisms affecting marine archeological remains and their boring patterns, the various types of bored materials, and the severity of the damage caused to heritage artifacts are also included. Both microborers (algae, fungi, and cyanobacteria) and macroborers (sponges, bivalves, polychaetes, sipunculids, and echinoids) are considered, and their roles in the structuring of endolithic assemblages are also covered. The experimental techniques currently employed to analyze bioerosion traces, helping to identify particular species and ichnospecies and their ecological dynamics, are also considered. Finally, a discussion of the current strategies proposed for the in situ protection and conservation of Underwater Cultural Heritage is provided.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3