Trophic Ecology of Deep-Sea Megafauna in the Ultra-Oligotrophic Southeastern Mediterranean Sea

Author:

Guy-Haim Tamar,Stern Nir,Sisma-Ventura Guy

Abstract

The trophic ecology of fourteen species of demersal fishes and six species of demersal decapod crustaceans from the continental slope and rise of the Southeastern Mediterranean Sea (SEMS) was examined using stable isotope analysis. Mean δ13C values among fish species varied by ca. 4.0‰, from -20.85‰ (Macroramphosus scolopax) to -16.57‰ and -16.89‰ (Conger conger and Centrophorus granulosus), showing an enrichment in 13C as a function of depth (200 – 1400 m). Mean δ13C values of the crustaceans showed smaller variation, between -18.54‰ (Aristeus antennatus) and -16.38‰ (Polycheles typhlops). This suggests a shift from pelagic to regenerated benthic carbon sources with depth. Benthic carbon regeneration is further supported by the low benthic-pelagic POM-δ13C values, averaging -24.7 ± 1.2‰, and the mixing model results, presenting relatively low contribution of epipelagic POM to the deep-sea fauna. Mean δ15N values of fish and crustacean species ranged 7.91 ± 0.36‰ to 11.36 ± 0.39‰ and 5.96 ± 0.24‰ to 7.73 ± 0.46‰, respectively, resulting in trophic position estimates, occupying the third and the fourth trophic levels. Thus, despite the proximity to the more productive areas of the shelf, low number of trophic levels (TL~1.0) and narrow isotopic niche breadths (SEAC<1) were observed for demersal crustaceans (TL = 2.94 ± 0.18) and fishes (TL = 3.62 ± 0.31) in the study area – probably due to the ultra-oligotrophic state of the SEMS resulting in limited carbon sources. Our results, which provide the first trophic description of deep-sea megafauna in the SEMS, offer insight into the carbon sources and food web structure of deep-sea ecosystems in oligotrophic marginal seas, and can be further used in ecological modeling and support the sustainable management of marine resources in the deep Levantine Sea.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3