A Biophysical Model and Network Analysis of Invertebrate Community Dispersal Reveals Regional Patterns of Seagrass Habitat Connectivity

Author:

Cristiani John,Rubidge Emily,Forbes Coreen,Moore-Maley Ben,O’Connor Mary I.

Abstract

The dispersal of marine organisms is a critical process for the maintenance of biodiversity and ecosystem functioning across a seascape. Understanding the patterns of habitat connectivity that arise from the movement of multiple species can highlight the role of regional processes in maintaining local community structure. However, quantifying the probability and scale of dispersal for marine organisms remains a challenge. Here, we use a biophysical model to simulate dispersal, and we conduct a network analysis to predict connectivity patterns across scales for the community of invertebrates associated with seagrass habitat in British Columbia, Canada. We found many possible connections and few isolated habitat meadows, but the probability of most connections was low. Most habitat connections occurred within 3 days of dispersal time over short distances, indicating potential limits to long distance dispersal and little effect of species-specific dispersal abilities on the potential spatial extent of habitat connectivity. We then highlight the different roles that individual seagrass meadows can play in maintaining network connectivity. We also identify clusters of connected meadows and use these clusters to estimate the spatial scale of community dynamics. The connectivity patterns generated by our dispersal simulations highlight the importance of considering marine communities in their broad seascape context, with applications for the prioritization and conservation of habitat that maintains connectivity.

Funder

Natural Sciences and Engineering Research Council of Canada

Fisheries and Oceans Canada

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3