Rapid mangrove expansion triggered by low river discharge episode in Nanliu river estuary, Beibu Gulf of China

Author:

Liu Tao,Huang Rongyong,Sun Yonggen,Liu Ying,Song Zhiguang

Abstract

Mangrove forest is a critical primary producer, biological habitat, and carbon sink in the subtropical-tropical coast zone, and the natural variation of mangrove coverage deserves study for a better understanding of the dynamics of mangrove coastal evolution. In this study, multispectral Landsat images from 1985 to 2018 are used to reconstruct the change in the coverage of mangrove (dominant species is Aegiceras corniculatum) and salt marsh (dominant species is Cyperus malaccensis) in the Nanliu River estuary. Tidal flat elevation measuring and 210Pb dating is used to study the substrate elevation when mangroves first colonize salt marsh. Historical temperature records, river discharge records, and the time series N/P concentration in sediment are analyzed. It is found that the mangrove forests have expanded rapidly in salt marsh since the mid-1980s. The change in factors such as accommodation space, cold event frequency, and nutrient supply cannot explain the origin of mangrove expansion. A low river discharge episode lasting for 8 years since 1986 is considered to have triggered the mangrove expansion in this area, as previously established salt marsh plants died due to germination restriction caused by high salinity and mangroves colonized the salt marsh habitat during this period. This case proves again that estuarine wetlands are very sensitive to salinity variation.

Publisher

Frontiers Media SA

Reference29 articles.

1. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change;Alongi;Estuarine Coast. Shelf Sci.,2008

2. Mangrove production and carbon sinks: A revision of global budget estimates;Bouillon;Global Biogeochem Cycles,2008

3. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events;Cavanaugh;Proc. Natl. Acad. Sci.,2014

4. Mangrove species’ responses to winter air temperature extremes in China;Chen;Ecosphere,2017

5. Damage to mangroves from extreme cold in early 2008 in southern China;Chen;Chin. J. Plant Ecol,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3