An enhanced ant colony optimizer with Cauchy-Gaussian fusion and novel movement strategy for multi-threshold COVID-19 X-ray image segmentation

Author:

Zhao Xiuzhi,Liu Lei,Heidari Ali Asghar,Chen Yi,Ma Benedict Jun,Chen Huiling,Quan Shichao

Abstract

The novel coronavirus pneumonia (COVID-19) is a respiratory disease of great concern in terms of its dissemination and severity, for which X-ray imaging-based diagnosis is one of the effective complementary diagnostic methods. It is essential to be able to separate and identify lesions from their pathology images regardless of the computer-aided diagnosis techniques. Therefore, image segmentation in the pre-processing stage of COVID-19 pathology images would be more helpful for effective analysis. In this paper, to achieve highly effective pre-processing of COVID-19 pathological images by using multi-threshold image segmentation (MIS), an enhanced version of ant colony optimization for continuous domains (MGACO) is first proposed. In MGACO, not only a new move strategy is introduced, but also the Cauchy-Gaussian fusion strategy is incorporated. It has been accelerated in terms of convergence speed and has significantly enhanced its ability to jump out of the local optimum. Furthermore, an MIS method (MGACO-MIS) based on MGACO is developed, where it applies the non-local means, 2D histogram as the basis, and employs 2D Kapur’s entropy as the fitness function. To demonstrate the performance of MGACO, we qualitatively analyze it in detail and compare it with other peers on 30 benchmark functions from IEEE CEC2014, which proves that it has a stronger capability of solving problems over the original ant colony optimization for continuous domains. To verify the segmentation effect of MGACO-MIS, we conducted a comparison experiment with eight other similar segmentation methods based on real pathology images of COVID-19 at different threshold levels. The final evaluation and analysis results fully demonstrate that the developed MGACO-MIS is sufficient to obtain high-quality segmentation results in the COVID-19 image segmentation and has stronger adaptability to different threshold levels than other methods. Therefore, it has been well-proven that MGACO is an excellent swarm intelligence optimization algorithm, and MGACO-MIS is also an excellent segmentation method.

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3