Novel methods for elucidating modality importance in multimodal electrophysiology classifiers

Author:

Ellis Charles A.,Sendi Mohammad S. E.,Zhang Rongen,Carbajal Darwin A.,Wang May D.,Miller Robyn L.,Calhoun Vince D.

Abstract

IntroductionMultimodal classification is increasingly common in electrophysiology studies. Many studies use deep learning classifiers with raw time-series data, which makes explainability difficult, and has resulted in relatively few studies applying explainability methods. This is concerning because explainability is vital to the development and implementation of clinical classifiers. As such, new multimodal explainability methods are needed.MethodsIn this study, we train a convolutional neural network for automated sleep stage classification with electroencephalogram (EEG), electrooculogram, and electromyogram data. We then present a global explainability approach that is uniquely adapted for electrophysiology analysis and compare it to an existing approach. We present the first two local multimodal explainability approaches. We look for subject-level differences in the local explanations that are obscured by global methods and look for relationships between the explanations and clinical and demographic variables in a novel analysis.ResultsWe find a high level of agreement between methods. We find that EEG is globally the most important modality for most sleep stages and that subject-level differences in importance arise in local explanations that are not captured in global explanations. We further show that sex, followed by medication and age, had significant effects upon the patterns learned by the classifier.DiscussionOur novel methods enhance explainability for the growing field of multimodal electrophysiology classification, provide avenues for the advancement of personalized medicine, yield unique insights into the effects of demographic and clinical variables upon classifiers, and help pave the way for the implementation of multimodal electrophysiology clinical classifiers.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Computer Science Applications,Biomedical Engineering,Neuroscience (miscellaneous)

Reference85 articles.

1. TensorFlow: A system for large-scale machine learning;Abadi;Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation,2016

2. A comparison of different machine learning algorithms using single channel EEG signal for classifying human sleep stages;Aboalayon;Proceedings of the 2015 IEEE Long Island Systems, Applications and Technology Conference, LISAT 2015,2015

3. INNvestigate neural networks!;Alber;J. Mach. Learn. Res.,2019

4. Towards better understanding of gradient-based attribution methods for deep neural networks;Ancona;Proceedings of the International Conference on Learning Representations,2018

5. Sleep EEG, depression and gender.;Armitage;Sleep Med. Rev.,2001

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3