Analysis of intraoperative microscopy imaging techniques and their future applications

Author:

Zhan Huiling,Sun Caihong,Xu Mingyu,Luo Tianyi,Wang Guangxing,Xi Gangqin,Liu Zhiyi,Zhuo Shuangmu

Abstract

During tumor resection, doctors use intraoperative biopsies to determine the tumor margin. However, the pathological procedures of traditional diagnostic methods, such as imprint cytology and frozen section analysis, are complicated and time-consuming. As this is not conducive to surgeries, their applications are limited to a large extent. Therefore, novel fast microscopy imaging technologies with resolutions comparable to those of pathological tissue sections are necessary. Stimulated Raman scattering (SRS), photoacoustic microscopy (PAM), multiphoton microscopy (MPM), and optical coherence microscopy (OCM) exhibit the advantages of high spatial resolution, large imaging depth, avoiding damage to biological tissues, label-free detection, and the availability of biochemical information of tissues. Additionally, they are superior to intraoperative biopsies owing to their fast imaging speeds. Therefore, they possess broad application prospects in tumor resection surgeries and the diagnosis of other diseases. This study briefly introduces the basic principles, structural characteristics, advantages and disadvantages, and the existing research status of SRS, PAM, MPM, and OCM in biomedicine. Furthermore, we propose a multi-mode hybrid detection technology that can be used for surgeries. The combination of the proposed technology with deep learning-based artificial intelligence can form the basis for intraoperative diagnosis in the future.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference103 articles.

1. Near-resonance enhanced label-free stimulated Raman scattering microscopy with spatial resolution near 130 nm;Bi Y;Light Sci Appl,2018

2. Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology;Li;Biomed Opt Express,2019

3. Multicolor stimulated Raman scattering microscopy;Lu;Mol Phys,2012

4. Evaluation of stimulated Raman scattering microscopy for identifying squamous cell carcinoma in human skin;Mittal;Lasers Surgery Med.,2013

5. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries;Maslov;Opt Lett,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3