Optical phase singularities: Physical nature, manifestations and applications

Author:

Angelsky O. V.,Bekshaev A. Ya.,Vasnetsov M. V.,Zenkova C. Yu.,Maksimyak P. P.,Zheng Jun

Abstract

Over the past 30 years, physical optics has been enriched by the appearance of singular optics as a new branch approved in scientific classifiers. This review briefly outlines the main concepts of the singular optics, their role in physical research and applications, and prospects of further development. The wave singularities are considered as a sort of structured-light elements and analyzed based on the generic example of screw wavefront dislocation (optical vortex). Their specific topological and mechanical properties associated with the transverse energy circulation are discussed. Peculiar features of the non-linear optical phenomena with singular fields are exhibited, with the special attention to generation of multidimensional entangled quantum states of photons. Optical fields with multiple singularities, especially, the stochastic speckle fields, are discussed in the context of optical diagnostics of random scattering objects. The exact and approximate correspondences between characteristic parameters of the optical-field intensity and phase distributions are analyzed with the aim of recovering phase information from the intensity measurements (“phase problem” solution). Rational singularity-based approaches to informative measurements of the scattered-field distribution are discussed, as well as their employment for the objects’ diagnostics. In particular, the practical instruments are described for the high-precision rough-surface testing. Possible enhancements of the singular-optics ideas and concepts in a wider context, including the transformation optics, near-field optics (surface waves), partially-coherent fields, and wave fields of other physical nature, are briefly exposed.

Funder

Ministry of Education and Science of Ukraine

Zhejiang University

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference215 articles.

1. Roadmap on structured light;Rubinsztein-Dunlop;J Opt,2017

2. Structured light: Ideas and concepts;Angelsky;Front Phys,2020

3. Self-healing of structured light: A review;Shen;J Opt,2022

4. Structured light;Forbes;Nat Photon,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3