Quantitative coarse graining of laminar fluid flow penetration in rough boundaries

Author:

Majhi Akankshya,Kool Lars,van der Gucht Jasper,Dijksman Joshua A.

Abstract

The interaction between a fluid and a wall is described with a certain boundary condition for the fluid velocity at the wall. To understand how fluids behave near a rough wall in a completely laminar flow regime, the fluid velocity at every point on the rough surface may be provided. This approach requires detailed knowledge of, and likely depends strongly on the roughness. Another approach of modelling the boundary conditions of a rough wall is to coarse grain and extract a penetration depth over which on average the fluid penetrates into the roughness. In this work, we examine the impact of well-defined patterned surfaces on the fluid flow behaviour. We considered two extreme cases: one with horizontal ridges and another with vertical ridges on the wall and an intermediate case with ridges at an angle on the wall. We show that for a broad range of periodic roughness patterns and relative flow velocities, a universal penetration depth function can be obtained. We obtain these results with experiments and complementary numerical simulations. We evaluate how this penetration depth depends on the various roughness parameters such as ridge depth, ridge spacing and ridge angle. Our results present a novel approach to investigating wall roughness boundary conditions by considering the penetration depth δ that captures the spatially averaged behaviour of the decaying velocity profile between the asperities. We find that this penetration depth δ can be rescaled into a simple exponential master curve δ = δ(1 − ekD/S) for horizontal ridges with varying depth D and spacing S. A similar variation of δ with D and S is observed for vertical ridges, but with a smaller magnitude δ, while for ridges at an angle, the penetration depth lies between the two extreme cases.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3