Combination of deep learning with representation learning in X-ray prohibited item detection

Author:

Rao Jianghao,Qin Peng,Zhou Gaofan,Li Meihui,Zhang Jianlin,Bao Qiliang,Peng Zhenming

Abstract

During X-ray inspection detection, a detector converts the collected X-rays from objects into electrical signals, which are then transmitted to a computer for image processing and analysis. From the aspect of digital image processing, detection tasks mainly focus on data processing and transformation to identify valuable features, which make the algorithms more effective. The consistent requirement for speed and accuracy in X-ray prohibited item detection is still not fully satisfied, especially in pictures obtained under special imaging conditions. For noisy X-ray images with heavy occlusion, a direct and suitable approach of representation learning is the optimal solution. According to our study, we realized that heterogeneous information fusion from different extraction approaches can be applied effectively to overcome this issue. We proposed two innovative algorithms to extract effective features of X-ray objects to significantly improve the efficiency of X-ray prohibited item detection. The brief model we proposed fuses the representations learned from the noisy X-ray images and outperforms the best model (DOAM-O) so far on OPIXray. Furthermore, the attention module we designed to select information on deep learning and representation strengthens the model; considering this, the model utilizes lesser time for both training and inference, which makes it easier to be trained on a lightweight computing device.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference67 articles.

1. Deepwalk: Online learning of social representations;Perozzi,2014

2. Line: Large scale information network embedding;Tang,2015

3. Grarep: Learning graph representations with global structural information;Cao,2015

4. node2vec

5. Fast network embedding enhancement via high order proximity approximation[C];Yang;Int Jt Conf Artif Intelligence,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3