DilatedFormer: dilated granularity transformer network for placental maturity grading in ultrasound

Author:

Wu Yunzhu,Yang Yijun,Zhu Lei,Han Zhenyan,Luo Hong,Xue Xue,Wang Weiming

Abstract

Placental maturity grading (PMG) is often utilized for evaluating fetal growth and maternal health. Currently, PMG often relied on the subjective judgment of the clinician, which is time-consuming and tends to incur a wrong estimation due to redundancy and repeatability of the process. The existing methods often focus on designing diverse hand-crafted features or combining deep features and hand-crafted features to learn a hybrid feature with an SVM for grading the placental maturity of ultrasound images. Motivated by the dominated performance of end-to-end convolutional neural networks (CNNs) at diverse medical imaging tasks, we devise a dilated granularity transformer network for learning multi-scale global transformer features for boosting PMG. Our network first devises dilated transformer blocks to learn multi-scale transformer features at each convolutional layer and then integrates these obtained multi-scale transformer features for predicting the final result of PMG. We collect 500 ultrasound images to verify our network, and experimental results show that our network clearly outperforms state-of-the-art methods on PMG. In the future, we will strive to improve the computational complexity and generalization ability of deep neural networks for PMG.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference45 articles.

1. Ultrasound of the placenta and umbilical cord: a review;Kellow;Ultrasound Q,2011

2. Novel placental ultrasound assessment: potential role in pre-gestational diabetic pregnancy;Moran;Placenta,2014

3. Multi-modal and multi-layout discriminative learning for placental maturity staging;Lei;Pattern Recognition,2017

4. Automatic staging of placental maturity based on dense descriptor;Li;Bio-medical Mater Eng,2014

5. Automatic grading of placental maturity based on liop and Fisher vector;Lei,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3