Attention-driven tree-structured convolutional LSTM for high dimensional data understanding

Author:

Lu Yi,Kong Bin,Gao Feng,Cao Kunlin,Lyu Siwei,Zhang Shaoting,Hu Shu,Yin Youbing,Wang Xin

Abstract

Modeling sequential information for image sequences is a vital step of various vision tasks and convolutional long short-term memory (ConvLSTM) has demonstrated its superb performance in such spatiotemporal problems. Nevertheless, the hierarchical data structures (e.g., human body parts and vessel/airway tree in biomedical images) in various tasks cannot be properly modeled by sequential models. Thus, ConvLSTM is not suitable for analyzing tree-structured image data that has a rich relation among its elements. In order to address this limitation, we present a tree-structured ConvLSTM model for tree-structured image analysis which can be trained end-to-end. To demonstrate its effectiveness, we first evaluate the proposed tree-structured ConvLSTM model on a synthetic Tree-Moving-MNIST dataset for tree-structured modeling. Experimental results demonstrate the superiority of the tree-structured ConvLSTM model for tree-structured image analysis compared with other alternatives. Additionally, we present a tree-structured segmentation framework which consists of a tree-structured ConvLSTM layer and an attention fully convolutional network (FCN) model. The proposed framework is validated on four large-scale coronary artery datasets. The results demonstrate the effectiveness and efficiency of the proposed method, showing its potential use cases in the analysis of tree-structured image data.

Publisher

Frontiers Media SA

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics

Reference55 articles.

1. Convolutional lstm network: A machine learning approach for precipitation nowcasting;Shi,2015

2. Deep learning for precipitation nowcasting: A benchmark and a new model;Shi,2017

3. Spatio-temporal video autoencoder with differentiable memory;Patraucean,2016

4. Videolstm convolves, attends and flows for action recognition;Li;Computer Vis Image Understanding,2018

5. Improving deep pancreas segmentation in ct and mri images via recurrent neural contextual learning and direct loss function;Jinzheng,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3