Abstract
The photofission fragment mass yields of actinides are evaluated using a systematic statistical scission point model. In this model, all energies at the scission point are presented as a linear function of the mass numbers of fission fragments. The mass yields are calculated with a new approximated relative probability for each complementary fragment. The agreement with the experimental data is quite good, especially with a collective temperature Tcol of 2 MeV at intermediate excitation energy and Tcol = 1 MeV for spontaneous fission. This indicates that the collective temperature is greater than the value obtained by the initial excitation energy. The generalized superfluid model is applied for calculating the fragment temperature. The deformation parameters of fission fragments have been obtained by fitting the calculated results with the experimental values. This indicates that the deformation parameters decrease with increasing excitation energy. Also, these parameters decrease for fissioning systems with odd mass numbers.
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics,Materials Science (miscellaneous),Biophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献